Top 10 Future Technologies You’ve Definitely Never Heard Of

Posted on

6. Seawater fuel

What is it?

When it comes to energy, the sea remains a massive untapped resource; it’s not like we’re going to run out of it anytime soon, what with the North Pole melting. And according to researchers, it could soon be put to good use as fuel for ships.

Bear with me : the process uses a potassium-promoted molybdenum carbide catalyst (bless you) to extract carbon dioxide from seawater, turning it into carbon monoxide via the reverse water-gas shift (RWGS) reaction. The carbon monoxide can in turn be converted into a hydrocarbon via the Fischer-Tropsch synthesis. Ships can then use this hydrocarbon instead of pre-onboarded fuel which, as we know, carries many risks.

How will it change the world?

The fuel currently used to power the thousands of ships that cross the seas and oceans daily is very polluting. The conversion of CO2 into chemicals and value-added fuels could significantly reduce the greenhouse gases they emit over the long term.

There are however a handful of issues which need fixing before we get to greener maritime routes. Firstly, carbon dioxide concentration in seawater is about 100 milligrams per liter. That’s not much. To put it into perspective, you’d need to process close to 45 million cubic meters of water to power a cruise ship for about a week. And the more water you process, the more sea life you remove from the food chain, with potentially catastrophic long-term results. Secondly, you’re still releasing carbon into the air at the end of the day, even if it’s water-based carbon. You could argue that it’s a net neutral as it will get back to the sea eventually, but if you’re at all ecologically-conscious, you know this is a slippery slope.


7. 20-minute Water

What is it?

Not all tech needs to be high; there’s often something rather elegant in low-tech solutions to complex problems. 20-minute water is one of these solutions, promising to provide clean drinking water to the masses. All one needs to do is soak a piece of cotton (which is highly conductive) for 20 minutes in an inexpensive solution containing carbon nanotubes and silver nanowires, then connect it to two electric wires to pass a little current through it. Twenty volts is enough to instantly electrocute bacteria and make the water passing through this filter (mostly) drinkable, without the need for the electricity-thirsty pumps that are used throughout the developing world. The silver then neutralises anything that’s not been killed by the electrical current.

How will it change the world?

The recipe was concocted especially for developing countries — remote areas where people don’t have access to chemical treatments such as chlorine. It could save some of the 300,000 children under 5 who die worldwide every year of waterborne diseases such as the cholera, typhoid and hepatitis. It could also help some of the 2.2 billion people who don’t have a wastewater treatment system.

Unlike other innovations in this article, this one hardly has any downsides. It’s very cheap : the amount of silver used for the nanowires is so small the cost is negligible, and the electricity needed can be easily supplied by a small solar panel or a couple 12-volt car batteries. Since the filter doesn’t trap bacteria (killing them instead), it can have much larger pores, allowing water to speed through at a more rapid rate. More than 80,000 times faster than existing filters, to be exact. And it does so without clogging, an issue which plagues existing solutions.

8. Zero-knowledge proof

What is it?

Privacy: ever heard of it? Computer scientists are perfecting a cryptographic tool we could use to prove something without revealing the information underlying the proof. It sounds incredible but not impossible once you wrap your head around the concept and the fact that it’s a bit more complex than saying “c’mon bro, you know I’m good for it”.

Allow me to simplify through an example. Imagine, if you will, that a man named John has a blind friend named Jane. He also has in his possession two marbles of different colours, though they are identical in shape and size. Jane puts them behind her back and shows one to John. She then does it again, either changing the marble or showing the same one again, asking if this is the same as the marble previously shown. If John were guessing whether it was the same or not, he would have a 50/50 chance of getting it right, so she does it again. And again. And because John sees the marbles’ colours, he gets it right each time, and the chance that he guessed lucky diminishes. Jane thus knows that John knows which marble is the original shown (and its colour), without her ever knowing the colour of any of the marbles. Boom, zero-knowledge proof. Or zero-knowledge succinct non-interactive argument of knowledge if you’re family. Obviously, it all gets mathematic and cryptographic from here, but you get the gist.


How will it change the world?

It’s easy to come up with VERY cool use cases. For example, if an app needs to know that you have enough money to put a transaction through : your bank could communicate that yes, that is the case, without giving an amount. It could also help identify a person without a birth certificate, allow someone to enter a restricted website without needing to display their date of birth… or help with nuclear disarmament. additionally, it could provide proof of a crypto-currency transaction without revealing its amount (BitCoin is, and always will be, too public for me —Go Zcash!). Yay for privacy, and here’s to an hopefully dying targeted advertising industry.

9. YOLOv5

What is it?

Real-time object detection is a technique used to detect objects from video. It’s the underlying technology behind… well, most things we want to use in the future, from Tesla’s self-driving cars to Amazon’s cashierless stores. The YOLO (“You Only Look Once”) models refer to some of the most versatile and famous real-time object detection and labelling models.

The latest iteration (V5) of the model is worthy of this list for a couple of reasons. It’s written in PyTorch, which will make its deployment to mobile a lot easier. It’s also quick. Very quick. 140 frames per second quick, while also preserving accuracy. Finally, YOLOv5 is nearly 90 percent smaller than YOLOv4. This means it will be deployed to embedded devices much more easily.

How will it change the world?

This innovation is important because it means we will soon be able to do real real-time analysis — detecting and labelling videos 140 times per second. For context, previous models struggled to get to 10 frames per second. At this speed, you can use AI on videos of fields as varied as the world of medicine or that of sport. It can also improve things like detecting obstacles in autonomous cars earlier to avoid even more collisions. It’s a really big deal, but one you surely won’t hear about in the newspapers.

10. 4D-printing

What is it?

The name 4D printing can lead to confusion: I am not implying that humanity will be able to create and access another dimension (Only Rubik can do that). Put simply, a 4D-printed product is a 3D-printed object which can change properties when a specific stimulus is applied (submerged underwater, heated, shaken, not stirred…). The 4th D is therefore Time; time needed for the stimulus to be relevant.

The key challenges of this technology is obviously finding the relevant “smart material” for all types of uses (namely a hydrogel or a shape memory polymer for the time being). Some work is being done in this space, but we’re not even close to being customer-ready, having yet to master reversible changes of certain materials.

How will it change the world?

The applications are still being discussed, but some very promising industries include healthcare (pills that activate only if the body reaches a certain temperature), fashion (clothes that become tighter in cold temperature), and home-making (furniture that becomes rigid under a certain stimulus).

Another really cool use case is computational folding, wherein objects larger than printers can be printed as only one part.

Obviously, it’s always possible that some of these innovations will never become popularised. This should however not stop us from aiming to better understand them : the knowledge gained through planning is crucial to the selection of appropriate actions as future events unfold. A basic understanding of new technologies can also help us steer clear of potentially destructive ones.

Good luck out there.

Leave a Reply

Your email address will not be published. Required fields are marked *